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Using the proposed heuristics and decomposing the system structure into
suitably sized modules allows simple and intuitive test procedures to be

developed with a minimum amount of computational effort.
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0. Abstract

’_'"_";3> When a system fails it may not be obvious which components are at fault.
Locating faulty components to be replaced may require a series of inspections
each of which reveals the state (functioning/failed) of one of the components.
The order in which components are inspected and replaced can greatly affect the
cost to restore the system to an operating condition. This paper investigates

inspection sequences for complex coherent systems. <E:__-

1. Iatroduction

When a system fails it is seldom obvious which components are at fault.
Locating the faulty parts may require & sequence of tests in each of which the .
state (functioning/failed) of one of the components is identified. If the
state of every component must be determined, then the order in which components
are tested may not matter much. But often testing stops as soon as the first

failed component is found. Or testing may continue until a failed component is

l/Thil research has been partially supported by the Office of Naval Research

under Contracts N00014-~79-C-0751 with Oregon State University and
NOO014-75~C-0561 with Stanford University.
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be called a critical failure.) In these situations the average number of tests
carried out depends upon the order in which components are tested.

Butterworth [1972] has developed two fasult-testing models for k-out-of-n
systems. In both models components fail independently of one another, each
test costs a given amount, and test procedures are compared by their respective
total expected costs. In the first model, the system is failed and test
procedures myst determine the state of each component. In the second model
test procedures must determine the system state. Following Butterworth's
nomenclature, a sequential test procedure prespecifies the sequence in which

components are tested; in a nonsequential procedure, the outcomes of early

tests may dictate the order of later tests. Sequentisl test procedures have an
isportant advantage over npnsequential procedures in that they are much easier
to specify and to implement. For determining the system state, Butterworth
identifies a sequential procedure that is optimal among all procedures,
sequential or not. For determining the component states, the optimal test
procedure '10 sequential only for some special cases, among thea parallel and
series systems. For other k-out-of-h systems the optimal procedure seems to be
neither easily identifiable nor easily implementable. For wmore complex systems
the prospects are even worse. Our emphasis is, therefore, upon identifying

good, if not optimal, test procedures for general coherent systems.

2. Sequential Test Procedures

The information required to specify a sequential test procedure is minimal
—- just sn ordered list of the system's components. In contrast, the amount of
information necessary to specify a nonsequential policy may be quite large,

because the choice of the nt—h- component to be tested may depend arbitrarily
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upon the Zn.l possible results of the preceding n-1 tests. Unless there is

a simple rule relating this choice to the previous test results, such a
procedure might require an inordinat.; amount of information to be specified
and, thus, be practically impossible to implement. For this reason we will
focus our attention upon sequential test procedures.

Consider first the situation where testing stops as soon as a failed
component is identified. 1In this case the optimal policy is sequential,
becasuse one knows in advance that all components tested prior to the last ome
will be working, and thus, the information known at any stage of testing can be
prespecified. Let x = (ul, esey un) be a permutation of 1, ..., n. The
expected cost of the sequential policy determined by x 1is given by

n-
F(x) = ¢l + ] Pr{components %)s eeey ® are functional
k=1

at time of system failure}] .

Thus, in principle, if one can compute the above probabilities, ooe can
deternine the optimsl test policy. In practice, however, these joint condi-
tional failure probabilities are very hard to determine, and the mumber of
permutations to be evaluated is very large. '

An alternative is to choose a test policy heuristically. One way to do so
is to compute the conditional failure probability of each component given
systes failure, and t:lmi to test the component having the highest conditional
failure probability first, the one with the second highest conditional failure
probability second, and so on. Although this procedure is not guaranteed to

produce an optimal test policy, it is a reasonable heuristic.
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Now consider the case vhere testing continues until a critically failed

component is identified. Here testing often contimues beyond the first

reres” W N~

detected failure, so the information known at any stage of testing cannot be

- .
At

o specified in advance. Thus, the optimal policy is geunerally not sequential,

- and consequently, is that much harder to determine. The heuristic procedure
suggested sbove may also be applied here, substituting critical failure
probabilities in the selection criterion. As before, the policy it produces
| wvill not necessarily be optimal.

We nov turn to the question of how to effectively compute the

probabilities on which these heuristics are based.

3. Calculation of Conditional Failure Probabilities for Heuristic Procedures
. Consider a coherent system (C, §) of n components with minimal path

. sets P,, ..., P.. Assume that components fail independently of one snother,

b
L.

and let !'1(0) be the time-to-failure distribution of component i. Ve assume

iy

£,
N

a proportional hazsards model for component failures, taking

)
‘I

;r'_ o] (

- -lil(t)
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R vhere ).1

v assumption is that instead of specifying n different distribution functious,

is a proportionality comstaent. A practical consequence of this

O

one need only specify a single hasard function together with n - 1 propor-
tionslity constants. In fact, the calculations in this paper will not even
i depend upon the hasard function but only the proportional hasards.

& Let p= i(t) s (1 - ll(t), eveg 1 = ln(t)) denote the wvector of compo-
nent reliadilities at a given time t. Let h(p) be the system reliability
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and let Ih(l.; P - Oh(g_)/bpi be the Birnbaum relisbility importance of

component 1. (Birnbaum [1969]).
Finally, let

Ah(i) = Pr{component 1 1is failed at time of system failure)

and
ch(x) = Pr{component 1 {is critically failed at time of systea
failure) .

A quantity related to %(1) and ch“) is the Barlow-Proschan importance

(Barlow and Proschan [1975}]),

P, (1) = Pr{component 1 causes system fsilure} .

®
(A component is said to cause system failure if the failure of the system and
the component coincide.) Identifying which component caused systea failure
cannot be determined by tests that only reveal whether or not a component is
feiled and nothing about how recently any failures may have occurred.
Nonetheless, the causal probabilities can be computed. Barlow and Proschan
[1973]) give the following formulas for Ph(i):

Bt = [ 0 Kodrgce)

In the case of proportional hasards, s simple change of variable reduces the

formula to




1 A, -1
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where

A A A
A 1
P"(P tpzt "'-Pn) .
A similar formula can be developed for Ah(i). Noting that Ah(i) is the

probability that the system functions at least as long as component 1 does,

A1) = ,{ (1, F(t))dr, (e)

- A -1
- [ nag, et e
- A -1
LG RER TR I L @

A comparable formula for ch(:l.) is more complicated. Suppose path sets

Pl, cvuy l’k contains component 1 and Pkﬂ.’ cesy Pr do not. Let T denote
the coherent system with path sets P, - {1}, P, - {1}, «eoy P - {1} and 1let
N denote the coherent system with path sets Plﬁ-l' esey Pr' Component i 1is
critically failed 1f 1) it causes system failure, or 2) when the systea ulti-
mately fails, there is a minimum path containing component 1 having the pro-

perty that all other components are functioning. Thus,

€, (1) = B (1) + {' Prix <t} * Pr{n(X) =t and <(X) > tdt .

..........
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Let Z,(s, t) = Pr{n(X) <s and <(X) > t} and let z,(t) = 3 24(%» t) omt®
In the case of proportional hazards, = 1“) can be expressed as a polynomial in

P gi(p). and ch(i) reduced to

€, (1) = B (1) + (j)" F (t) © £ (t)de

1 ki :
= B, (1) +£ (L-p7) g (p)p . (3)

Equations (1), (2) and (3), in principle, allow the three failure-related pro-
babilities Ph(i). Ah(i) and ch(i) to be calculated. However, these
formulas may not be easy to evaluate directly. The integrands are polynomials
in p, but determining the coefficients of these polynomials can be computa-
tionally complex and very time consuming if the system is very large. Barlow
and Proschan [1975] have suggested a Monte Carlo approach to approximate the
integral in (1). A similar procedure could be used to evaluate (2) and (3).
As an alternative, we will develop an analytic methodology which exploits the
existance of modules within the coherent systea to facilitate the computations.
A wodule of a coherent system (C, #) is a subset A of components
organized into some coherent substructure X such that the system performance

depends only upon the components in A through the performance of ¥, i.e.,

[
#x) = o(xixd, L),




vhere gf denotes a vector with components X5 i €A, and A= C-A. The
structure function ¢ 1is called the organizing structure. Birnbaum [1969]
shows that the overall importance of a component within a module is the product
of its importance within the module and the importance of the module within the

organizing structure, i.e.,
) = ay - ton . )

This formula allows the computation of the integrand in (2) to proceed on a
godule-by-odule basis instead of having to consider the entire system at
once. This is a crucial advantage, since the computations involved in
determining h(p), Ih(i; p)s or 31(p) directly grow exponentially with the
number of min paths.

In order to calculate ch(i) efficiently, a modular decomposition formula

for gi(p) is needed.

Proposition:

ste) = gle) « Yo p) + its p) ¢ ghm) (5

Proof: Suppose ¢ 18 defined by min paths Pl' sesy P.. Suppose Pl' ees, P

) |
contain module M and P£+1, veay P' do not. Let 1: denote the structure

function defined by min paths Pl - {M}, eco,y Px - {M}, and let n: be the
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¢ ¢ X X
structure function defined by P,‘ﬂ, ceey P.. Define T Ny T4 and "

similarly. These quantities are interrelated as follows:

L I { p 4
M T Yy
¢ _ Y 4 x_.Y,. Y. x
L Y VI P VIR VIR PR
'! Let '!1 denote the lifetime of component 1, and let
.~: 1 1if 'ri >t
‘:t: xi(t) =
L‘ 0 otherwise .

| 23s, £) = Prin®X(e)) = 0 amd cfcx(e)) = 1}
LS = pr[{ny(x(e)) = 0} and {ey(x(e)) = 0 or n} (X(s)) = 0}

and {ey(x(e)) = 1} and {s}x(e)) = 1}].
g For s < ¢,

X z:(-.t) - Pr{n:(g(l)) =0 and t:(l(t)) =1

* pr{nf(X(s)) = 0 and t{(X(t)) = 1}

- z;(-, 0+ zie, 0 .

T e

-:(:) - ::(c) e zke, 0 + z:(:, e+ tho) .
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Since for any coherent structure,
zZ,(t, t) = Prin(X(t)) = 0 and <(X(t)) = 1}
- h(1,, PN - h(o,, PD)
-5, 0,

the result is established.

4. Computational Notes and an Example

A computer program to determine conditional-failure and critical-failure
probabilities has been developed by and is available from the authors. This
program 1s written in ANSI-Standard FORTRAN and exploits modules to efficiently
compute Ah(i) and ch(i). The program only allows integer values for the
ki. It is easy to show that if one multiplies each ki by a common positive
constant no change to Ah(i) or ch(i) results. Thus._requiring integer
values for the Ki is not a very severe restriction. The system structure is
entered in a "bottom—up” fashion, with the most elementary modules input first.
The inclusion-exclusion method is used to compute the reliability h(p) of
each module immediately after it is input. As each h(p) 1is computed, 11(2)
and gi(p) are determined also. As modules are input, equations (4) and (5)
are used to determine the overall importance and critical polynomials. Once
all modules have been input, equations (2) and (3) are used to compute Ah(i)
and Ch(i). Thus, the heuristic sequential inspection policies for the two
optimization criteria may be obtained. Special methods of encoding polynomials

and of sequencing through path subsets are employed to improve speed.

10
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To illustrate the efficiency of exploiting modules in determining these

failure probabilities, consider the following example system.

The circled numbers are the failure rates. The table below gives the

conditional-failure and critical-failure probabilities.

i Ah(i) ch(i)

1 0.605 0.350

2 0.385 0.292

3 0.568 0.213

4 0.690 0.213

5 0.729 0.380

6 0.635 0.439

7 0.336 0.046

8 0.368 0.238

9 0.777 0.238

10 0.350 0.122
Optimization Criterion | Heuristic Inspection Seguence
first failure 9, 5,4, 6, 1, 3, 2, 8, 7, 10
first critical failure 6, 5,1, 2, 8, 9, 3, 4, 10, 7

e a e almla xoan L WSS N by iy oy




To compute the above directly (without breaking down the system into modules)
required 10.7 CPU-seconds on a CYBER 73. The most extensive modular decomposi-
tion of the system would be to consider components 3 and 4 as one module,
component 1 and the first module as a second module, components 8 and 9 as a
third module, and components 2, 5, 6, 7, 10 and modules 2 and 3 as a fourth
module. Utilizing this modular decomposition reduced the computation time by
96X — to 0.4 CPU-seconds.

Although this computer program was developed on a large computer, it
should be easily adaptable to microcomputers. Almost all of the calculations
involve integer arithmetic (assuming integer values for the ki). Only the
final polynomial integrations require floatiang point division. Overall memory
requirements can be large, because each component has assoclated with it two
polynomials, Ih(i; ph) and gi(p), each of which may have hundreds of terms.
In addition, each module has associated with it a reliability polynomial,
h(ph). However, only small portions of this information are needed at any
given time, and so it can be stored on relatively slow-speed media, such as

floppy disks.

5. Conclusions

Locating faulty components in a failed system may require costly
inspections. The total expected cost to find a failed or critically failed
component can be significantly influenced by the order in which components are
tested. Determining the optimal inspection sequence is impractical for all but

the simplest systeam structures, so heuristic procedures must be used.

12
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Using the proposed heuristics and decomposing the system structure into

suitably sized modules allows simple and intuitive test procedures to be

1] . L e «

developed with a minimum amount of computational effort.
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